Identification of Microbial Carbon Cyclers Using Stable Isotope Approaches

### Lindsay Darjany California State University, Long Beach



### **Microbial Ecosystem Functions**

- Biogeochemical cycling
  - Nitrogen
  - Sulfur
  - Carbon
- Primary production
- Trophic support



Azam et al. 1998

#### NET PRIMARY PRODUCTIVITY OF SELECTED ECOSYSTEMS (g/m<sup>2</sup>/year - amount of photosynthesis)



### **Sources of Primary Production**



Greater algal productivity on west coast (Zedler et al.1980; Bouillon and Boschker, 2006)



# Fate of Organic Matter



### Objectives

- Identify bacteria responsible for the utilization of marsh macrophyte derived carbon
- Identify invertebrates responsible for Spartina and algal utilization
- Place microbial carbon cyclers within benthic trophic structure



### **Study Site**





### I. DNA Stable Isotope Probing (SIP)

 Directly links microbial identity with function in a natural community (Radajewski et al. 2000; Neufeld, 2007)



### **Applications of DNA SIP**

| Metabolizer type             | Substrate                     | Habitat                | References                |
|------------------------------|-------------------------------|------------------------|---------------------------|
| Methanol utilizers           | <sup>13</sup> C methanol      | Forest soil sample     | Radajewski et al.<br>2000 |
| Phytodetritus<br>degraders   | <sup>13</sup> C cyanobacteria | Marine sediment        | Gihring et al. 2009       |
| Pollutant degraders          | <sup>13</sup> C naphthalene   | Bioreactor             | Singleton et al. 2005     |
| Root leachate<br>utilizers   | <sup>13</sup> CO <sub>2</sub> | Grassland soil         | Rangel-Castro, 2005       |
| Fungal methanol<br>degraders | <sup>13</sup> C methanol      | Rice field soil        | Lueders et al. 2004       |
| Methanotrophs                | <sup>13</sup> C methane       | Peat Bog               | Morris et al. 2002        |
| Cellulose degraders          | <sup>13</sup> C cellulose     | Pine soils             | Eichorst and Ruske, 2012  |
| Benzene degraders            | <sup>13</sup> C benzene       | Enrichment<br>cultures | Herrmann et al. 2010      |

### Sampling For SIP



Total=12 x 1 cm cores divided into 3 treatments



Neufeld et al. 2007

## **DNA SIP Molecular Analysis**

- PCR amplification of 16S rRNA genes for bacteria
- Terminal Restriction Fragment Length Polymorphism (T-RFLP) to identify general community differences
- Clones libraries created for the heavy (utilizers) and light (nonutilizers) fractions



wiki.biomine.skelleftea.se

### **Identifying Enriched Fractions**

<sup>13</sup>C Tube Fraction Density



### **Similar Richness and Diversity**

Chao

Shannon



#### **Rarefaction Curve**



### **Distinct Community Structure**

**Species Level** 



**Libshuff:** determines if clone libraries are significantly different based on operational taxonomic units (OTU)

Libshuff p=<0.001

### **Distinct Community Structure**

**Genus Level** 



### Heavy

## Light



### II. In Situ Enrichment Experiment

 Tracked enriched <sup>13</sup>C algal mats and <sup>15</sup>N Spartina into the organisms that utilized these different sources of carbon



Enriched algal mat - 6X background Enriched Spartina -100X background

### Sampling For SIA



### **Enrichment May Vary by Feeding Type**







### Conclusions

- This study is the first to use SIP with salt marsh sediment
- Lignocellulose SIP successfully identified bacterial carbon utilizers

   community structure differences
- DNA SIP paired with enrichment studies has the potential to elucidate microbial mediated pathways

### Fate of Organic Matter Macrophyte Algal 1° Production 1° Production 1 Microbes? Detritus 2 Microbes Invertebrate 3 Microbes detritivores and algal feeders

### **Further Investigation**

- Direct counts for microbial biomass and abundance
- Fungal characterization via DNA SIP
- Mixing models of stable isotope data



### Acknowledgements

- Drs. Jesse Dillon and Christine Whitcraft
- Dillon lab, Whitcraft lab
- Orphan lab (Caltech)
- Funding
  - California Seagrant
  - CSU-COAST Summer Research Grant
  - CSULB
    - Reish Research Grant
    - ASI Travel Grant
    - Handloser Tuition Award